N9 — HALF LIFE

Target: I can perform calculations related to how quickly radioactive substances decay.

Half-Life

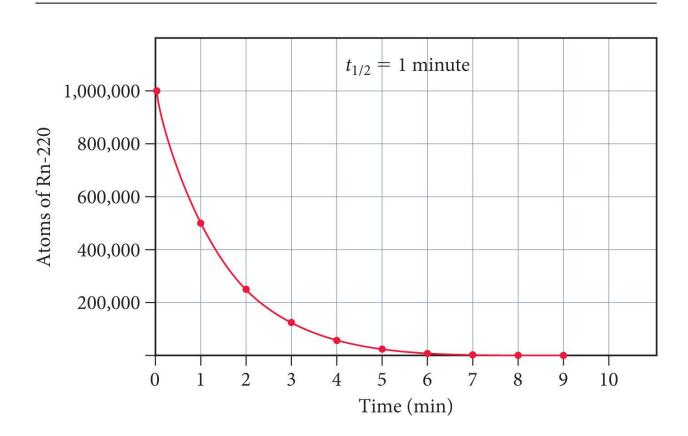
Half Life is the time required for half of a radioisotope's nuclei to decay into its products.

# of ½ lives	% Remaining
0	100%
1	50%
2	25%
3	12.5%
4	6.25%
5	3.125%
6	1.5625%

Graphing Half-Life

Half of the radioactive atoms decay each half-life.

Decay of Radon-220



Using a Table

Suppose you have 10.0 grams of strontium – 90, which has a half life of 29 years. How much will be remaining after x number of years?

# of ½ lives	Time (Years)	Amount Remaining (g)
0	0	10
1	29	5
2	58	2.5
3	87	1.25
4	116	0.625

Half-Life Equation

Radioactive

Use a handy **Amount Starting** dandy equation! $A_E = A_S \times (0.5)^n$ # or half-lives Amoun **Ending** t = time passedh = length of

one half-life

Solving for % remaining

$$A_{E} = A_{S} \times (0.5)^{n}$$

% remaining =
$$A_E$$
 x 100 As

$$\frac{A_{E}}{A_{S}} = (0.5)^{n}$$

Then multiply your answer by 100 to put it in % format!

If gallium – 68 has a half-life of 68.3 minutes, how much of a 160.0 mg sample is left after 1 half life?
 80 mg
 After 2 half lives?
 40 mg
 After 3 half lives?

$$A_E = A_s \times (0.5)^n$$

80 mg = 160.0 mg x (0.5)¹

40 mg = $160.0 \text{ mg x } (0.5)^2$

Cobalt – 60, with a half-life of 5 years, is used in cancer radiation treatments. If a hospital purchases a supply of 30.0 g, how much would be left after 15 years? ______ 3.75 g

$$\mathbf{A}_{\mathbf{E}} = \mathbf{A}_{\mathbf{s}} \times (0.5)^{\mathbf{n}}$$

$$A_{E} = 30.0g \times (0.5)^{(15/5)} = 3.75 g$$

Iron-59 is used in medicine to diagnose blood circulation disorders. The half-life of iron-59 is 44.5 days. How much of a 2.000 mg sample will remain after 133.5 days?

$$A_E = A_s \times (0.5)^{t/h}$$
 $A_E = 2.000 \text{ mg} \times (0.5)^{(133.5/44.5)}$

 $0.2500 \text{ mg} = 2.000 \text{ mg} \times 0.125$

Solve for Time/Half-life

$$\mathbf{A}_{\mathbb{E}} = \mathbf{A}_{\mathbb{S}} \times (0.5)^{\dagger/h}$$

Isolate (0.5)*/h

$$\mathbf{A}_{\mathbb{E}} = (0.5)^{\dagger/h}$$

Bring down exponent using logs

depending on what you want to solve for!

The half-life of polonium-218 is 3.0 min. If you start with 20.0 g, how long before only 1.25 g remains?

A sample initially contains 150.0 mg of radon-222. After 11.4 days, it contains 18.75 mg of radon-222. Calculate the half-life.

h = 3.8 days

YouTube Link to Presentation

https://youtu.be/7152ocNo7ko